ZERO SHRINK
TECHNOLOGY
This page is devoted entirely to LTCC zero shrink
materials and processes.
Sea Ceramics is actively developing Zero Shrink Technology for use in
product designed for LTCC. Recent breakthroughs in conductor materials, ceramic particle
size control and composite tape casting now positions this technology for use in new POC /
POD products. Sea Ceramics is presently working with both the Heralock and ZST
zero shrink material systems. We have provided the following technical information for
your review:
To save these documents to your computer choose the save icon on the
Acrobat tool bar or right mouse click the hyperlink and select save target as.
HERAEUS HERALOCK
Heralock HL2000 Design Guide
"The following documentation has been prepared by Heraeus,
Incorporated, Circuit Materials Division, as a guide for both the LTCC foundry and the
circuit designer to aid in the application and processing of Heraeus LTCC materials.
In addition, many LTCC foundries have developed their own
set of design guidelines that outline the specific capabilities of that foundry. Where
conflicts arise between guidelines published by a specific foundry and guidelines
published by Heraeus, the foundry guidelines should be used."
"This
Heraeus LTCC materials set consists of HeralockÒ
HL2000, as
well as a family of conductors in silver, gold, and mixed metal which have been
specifically formulated to match the HL2000 tape. This family of materials has been
developed to address todays and emerging market demands for LTCC module design and
production. The near zero shrink capability of HL2000 allows for increased ease of use,
process simplification, and lower overall cost. HL2000 offers a combination of
competitively priced LTCC tape and high performance conductors,
which together offer excellent electrical and mechanical performance."
Microwave
Module Design with Heralock HL2000
Abstract - The
free-sintered LTCC manufacturing process is a cost-effective approach for building complex
electronic modules, especially when good RF performance is needed. The x-y shrinkage and
the shrinkage variation that occurs during the firing of standard LTCC is a limitation of
this technology for large format manufacturing processes and can cause problems with
precision microwave structures. Although several techniques for controlling the x-y
shrinkage with constrained sintering have been developed, these additional processes tend
to complicate
the manufacturing process. HeraLock 2000 LTCC
tape (patent pending) is formulated to yield the benefits of constrained sintering
techniques with a free-sintered process. While standard LTCC has x-y shrinkage similar to
the shrinkage in the z-axis, free sintered HeraLock 2000
densifies primarily in the z-axis, leaving near-zero shrinkage in the x and y directions.
The HeraLock 2000 tape
is lead-free and cadmium-free with fired properties appropriate for microwave devices
requiring low-loss at frequencies up to at least 6 GHz as well as automotive and
general-purpose packaging applications. The effect of various firing profile variations on
the shrinkage of HL2000 is discussed. Mobile residual glass affects LTCC tapes to varying
degrees; these effects will be discussed in the context of conductor and post-fired
resistor performance. An overview of microwave material testing with the HL2000 material
set will also be shown. The benefits of the HeraLock 2000
material system for existing applications as well as for entirely new module designs will
be described. The self-constrained tape has unique advantages for building cavity
structures and integrating passive components. New fiber optic packaging structures are
also enabled.
Key
words: LTCC, constrained sintering, RF materials, cavity structures, microwave, embedded
passives
Heralock
2000 Self Constrained LTCC Tape
Abstract - A limitation of low-temperature co-fired ceramic (LTCC)
technology involves the x-y shrinkage of LTCC structures upon firing and the control or
tolerance of that shrinkage. This problem affects component design, materials utilization,
lot-to-lot tolerance of fired components and surface circuit feature location. This paper
discusses a novel method
to prevent the x-y shrinkage of LTCC structures with the implementation of a new LTCC tape
formulation. The HeraLock 2000 tape
is in most ways indistinguishable from a standard LTCC tape formulation. A modified form
of CT2000 tape, HeraLock 2000 is a
lead-free and cadmium-free formulation with properties appropriate for general-purpose
packaging, automotive modules and RF applications requiring low-loss at frequencies up to
at least 6 GHz. The main advantage of HeraLock 2000 tape
is its unique shrinkage properties during firing. Most free-sintered tapes have shrinkage
in the x and y directions similar to the shrinkage in the z-axis. In contrast, free
sintered HeraLock 2000
densifies by shrinking primarily in the z-axis, leaving near-zero shrinkage in the x and y
directions. In an example significant for large-format manufacturing, the x-y shrinkage on
six-inch square parts (152 mm x 152 mm) fired with the standard profile was 0.114% +/-
0.014%.In its green
state, HeraLock 2000 is
handled similarly to conventional tapes. The only change in processing relative to CT2000
is a somewhat longer firing profile. The HeraLock tape is
compatible with standard design guidelines with respect to conductors or via holes. The
HeraLock formulation
resists camber or show-through from co-fired conductors and is compatible with 100%
coverage ground-planes on surface or buried metal layers. The paper concludes by
discussing the advantages of HeraLock HL2000 for
the manufacturing LTCC modules. For example, cavity structures cut into the green HeraLock tape show
no x-y shrinkage or distortion after firing. Large area boards can be fabricated with
minimal solder pad alignment problems a common disadvantage of LTCC. These large
area boards permit the fabrication of circuits in high volume at low cost. A further
benefit compared to sacrificial layer constrained sintered processes is the ability to use
co-fired solderable top conductors.
Key words:
LTCC, constrained sintering, RF materials, cavity structures, microwave, opto-electronic
ZST
TECHNOLOGY
To
save these documents to your computer right mouse click the hyperlink and select save
target as.
View
ZST HTML Power Point Presentation
Multilayer Ceramic Integrated Circuit